Force protection using composite sandwich structures
نویسندگان
چکیده
In the recent past, advances have been made in the attempt to utilize composite materials as components in protective structures such as those employed by the Air Force to secure critical military assets. In such applications, where lightweight materials that exhibit large levels of energy absorption and high strength/stiffness characteristics are desirable, composite sandwich constructions offer an attractive solution. In an attempt to evaluate the suitability of certain sandwich structures for use in force protection applications, several sandwich constructions with somewhat novel core materials were identified. A group of thermoplastic core materials have been developed that possess features of both a dense elastic solid and a foam type material. This class of core materials incorporates sloping cell walls, rather than the traditional parallel cell wall structure present in, say, a regular aluminum honeycomb. This feature, along with the increased surface area connectivity present between cells (produced by the forming process used to create the core materials) integrates surrounding cells into what may be described as an enhanced hexagonal single unit cell structure. To develop a preliminary understanding of the response of these enhanced cellular materials to the various loading regimes that could be encountered in a protective structure, a series of static and dynamic tests were conducted at Tyndall Air Force Base. A complete description of the novel core materials, as well as the results of the static and dynamic tests, will be presented in this paper. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Analytical Prediction of Indentation and Low-Velocity Impact Responses of Fully Backed Composite Sandwich Plates
In this paper, static indentation and low velocity impact responses of a fully backed composite sandwich plate subjected to a rigid flat-ended cylindrical indenter/impactor are analytically investigated. The analysis is nonlinear due to nonlinear strain-displacement relation. In contrast to the existed analytical models for the indentation of composite sandwich plates, the stacking sequence of ...
متن کاملLow Velocity Impact Response of Laminated Composite Truncated Sandwich Conical Shells with Various Boundary Conditions Using Complete Model and GDQ Method
In this paper, the dynamic analysis of the composite sandwich truncated conical shells (STCS) with various boundary conditions subjected to the low velocity impact was studied analytically, based on the higher order sandwich panel theory. The impact was assumed to occur normally over the top face-sheet, and the contact force history was predicted using two solution models of the motion which we...
متن کاملEffect of Follower Force on Vibration Frequency of Magneto-Strictive-Faced Sandwich Plate with CNTR Composite Core
This study deals with the vibration response of sandwich plate with nano-composite core and smart magneto-strictive face sheets. Composite core is reinforced by carbon nanotubes (CNTs) and its effective elastic properties are obtained by the rule of Mixture. Terfenol-D films are used as the face sheets of sandwich due to magneto-mechanical coupling in magneto-strictive material (MsM). In order ...
متن کاملThe Effects of Initial In-Plane Loads on the Response of Composite-Sandwich Plates Subjected to Low Velocity Impact: Using a New Systematic Iterative Analytical Process
A new systematic iterative analytical procedure is presented to predict the dynamic response of composite sandwich plates subjected to low-velocity impact phenomenon with/without initial in-plane forces. In this method, the interaction between indenter and sandwich panel is modeled with considering the exponential equation similar to the Hertzian contact law and using the principle of minimum p...
متن کاملImproving the Performance of the Sandwich Panel with the Corrugated Core Filled with Metal Foam: Mathematical and Numerical Methods
A new type of composite structure with a metal foam is reinforced by the metal corrugated core, called metal-foam-filled sandwich panel with a corrugated or V-frame core, is modelled, simulated, and studied in this article. All types of samples with different relative densities of the foam are tested and analyzed under the drop hammer load. The sandwich panel included two aluminium face-sheet, ...
متن کامل